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Now for Something Completely Different
• We will look at languages and grammars from 

a “mathema<cal” point of view
• But Discrete Math (logic)
– No real numbers
– Symbolic discrete structures, proofs

• Interested in complexity/power of different 
formal models of computa<on
– Related to asympto<c complexity theory

• This is the source of many common CS 
algorithms/models



Two main classes of models

• Automata
– Machines, like Finite-State Automata

• Grammars
– Rule sets, like we have been using to parse

• We will look at each class of model, going 
from simpler to more complex/powerful

• We can formally prove complexity-class 
relaDons between these formal models



Simplest level: 
FSA/Regular sets



Finite-State Automata (FSAs)

• Simplest formal automata
• We’ve seen these with numbers on them as 

HMMs, etc.

(from Wikipedia)



Formal defini-on of automata

• A finite set of states, Q
• A finite alphabet of input symbols, Σ
• An ini-al (start) state, Q0 ∈Q
• A set of final states, Fi ∈Q 
• A transi-on func-on, δ: Q x Σ → Q

• This rigorously defines the FSAs we usually just 
draw as circles and arrows



DFSAs, NDFSAs

• Determinis/c or Non-determinis/c
– Is δ func/on ambiguous or not?

– For FSAs, weakly equivalent



Intersec(ng, etc., FSAs

• We can inves(gate what happens a7er 
performing different opera(ons on FSAs:
– Union:  L = L1 ∪ L2
– Intersec(on
– Nega(on
– Concatena(on
– other opera(ons: determinizing or minimizing FSAs



Regular Expressions

• For these “regular languages”, there’s a simpler 
way to write expressions: regular expressions:

Terminal symbols
(r + s)
(r • s)
r*
ε

• For example:  (aa+bbb)*



Regular Grammars
• Le--linear or right-linear grammars
• Le--linear template:

A → Bw or  A → w
• Right-linear template:

A → wB or  A → w
(where w is a sequence of terminals)

• Example:   
S → aA | bB | ε ,  A → aS ,  B → bbS



Formal Defini-on of a Grammar

• Vocabulary of terminal symbols, Σ (e.g., a)
• Set of nonterminal symbols, N    (e.g., A)
• Special start symbol, S ∈ N
• Produc-on rules, such as A → aB
• Restric-ons on the rules determine what kind of 

grammar you have

• A formal grammar G defines a formal 
language, L(G), the set of strings it generates



Amazing fact #1:
FSAs are equivalent to RGs

• Proof: two construc=ve proofs: 
– 1: given an arbitrary FSA, construct the 

corresponding Regular Grammar 
– 2: given an arbitrary Regular Grammar, construct 

the corresponding FSA



Construct an FSA from
a Regular Grammar

• Create a state for each nonterminal in grammar
• For each rule “A → wB” construct a sequence of 

states accep>ng w from A to B
• For each rule “A → w” construct a sequence of 

states accep>ng w, from A to a final state

• This shows right linear case; use LR for leC linear



Construct a Regular Grammar 
from a FSA

• Generate rules from edges
• For each edge from Qi to Qj accep8ng a:

Qi → a Qj

• For each ε transi8on from Qi to Qj:
Qi → Qj

• For each final state Qf:
Qf → ε



Proving a language is not regular

• So, what kinds of languages are not regular?

• Informally, a FSA can only remember a finite 
number of specific things.  So a language 
requiring an unbounded memory won’t be 
regular.



Proving a language is not regular

• So, what kinds of languages are not regular?

• Informally, a FSA can only remember a finite 
number of specific things.  So a language 
requiring an unbounded memory won’t be 
regular.

• How about anbn? “equal count of a’s and b’s”



Pumping Lemma: argument:

• Consider a machine with N states
• Now consider an input of length N; since we 

started in Q0, we will now be in the (N+1)st
state visited

• There must be a loop: we had to visit at least 1 
state twice; let x be the string up to the loop, y 
the part in the loop, and z aGer the loop

• So it must be okay to also have M copies of y 
for any M (including 0 copies)



Pumping Lemma: formally:

• If L is an infinite regular language, 
then there are strings x, y, and z
such that y ≠ ε and xynz ∈ L, for all n ≥ 0.

• xyz being in the language requires also:
• xz, xyyz, xyyyz, xyyyyz, …, xyyyyyyyyyyz, …



Pumping Lemma: figure:

q0 q
Nqx z

y



Example proof that a L is not regular

• What about anbn?  
ab
aabb
aaabbb
aaaabbbb
aaaaabbbbb
…

• Where do you draw the xynz lines?



Example proof that a L is not regular

• What about anbn?  Where do you draw the lines?
• Three cases:
– y is only a’s: then xynz will have too many a’s
– y is only b’s: then xynz will have too many b’s
– y is a mix: then there will be interspersed a’s and b’s

• So anbn cannot be regular, since it cannot be 
pumped



Next level: 
PDA/CFG



Push-Down Automata (PDAs)

• Let’s add some unbounded memory, but in a 
limited fashion

• So, add a stack:

• Allows you to handle some non-regular 
languages, but not everything



Formal defini-on of PDA

• A finite set of states, Q
• A finite alphabet of input symbols, Σ
• A finite alphabet of stack symbols, Γ
• An ini-al (start) state, Q0 ∈Q
• An ini-al (start) stack symbol Z0 ∈Γ
• A set of final states, Fi ∈Q 
• A transi-on func-on, δ: Q x Σ x Γ → Q x Γ*



Context-Free Grammars

• Rule template:
A → γ

where γ is any sequence of terminals/non-terminals

• Example:      S → a S b | ε

• We use these a lot in NLP
– Expressive enough, not too complex to parse.
• We oLen add hacks to allow non-CF informaOon flow.

– It just really feels like the right level of analysis.
• (More on this later.)  



Amazing Fact #2:
PDAs and CFGs are equivalent

• Same kind of proof as for FSAs and RGs, but 
more complicated

• Are there non-CF languages?  How about 
anbncn?



Highest level: 
TMs/Unrestricted grammars



Turing Machines

• Just let the machine move and write on the tape:

• This simple change produces general-purpose 
computer



TM made of LEGOs



Unrestricted Grammars

• α → β, where each can be any sequence (α 
not empty)

• Thus, there is context in the rules:
aAb → aab
bAb → bbb

• No surprise at this point: equivalent to TMs
– Church-Turing Hypothesis



Even more amazing facts:
Chomsky hierarchy

• Provable that each of these four classes is a 
proper subset of the next one:

Type 0: TM
Type 1: CSG
Type 2: CFG
Type 3: RE

0
1

* 2 3



Type 1: Linear-Bounded Automata/
Context-Sensi:ve Grammars

• TM that uses space linear in the input
• αAβ → αγβ  (γ not empty)

• We mostly ignore these; they get no respect
• Correspond to each other
• Limited compared to full-blown TM
– But complexity can already be undecidable



Chomsky Hierarchy: proofs

• Form of hierarchy proofs: 
– For each class, you can prove there are languages 

not in the class, similar to Pumping Lemma proof
– You can easily prove that the larger class really 

does contain all the ones in the smaller class



Intersec(ng, etc., Ls

• We can again inves(gate what happens with 
Ls in these various classes under different 
opera(ons on Ls:
– Union
– Intersec(on
– Concatena(on
– Nega(on
– other opera(ons



Chomsky hierarchy: table



Mildly Context-Sensi0ve Grammars

• We really like CFGs, but are they in fact expressive 
enough to capture all human grammar?

• Many approaches start with a “CF backbone”, and 
add registers, equa0ons, etc., that are not CF.

• Several non-hack extensions (CCG, TAG, etc.) turn out 
to be weakly equivalent!
– “Mildly context sensi0ve”

• So CSFs get even less respect…
• And so much for the Chomsky Hierarchy being such a big deal



Trying to prove human languages 
are not CF

• Certainly true of seman6cs.  But NL syntax?
• Cross-serial dependencies seem like a good 

target:
– Mary, Jane, and Jim like red, green, and blue, 

respec7vely.
– But is this syntac6c?

• Surprisingly hard to prove



Swiss German dialect!
da1ve-NP accusa1ve-NP da1ve-taking-VP accusa1ve-taking-VP

• Jan säit das mer em Hans es huus hälfed aastriiche
• Jan says that we Hans the house helped paint 
• “Jan says that we helped Hans paint the house” 

• Jan säit das mer d’chind em Hans es huus haend wele laa hälfe
aastriiche
• Jan says that we the children Hans the house have wanted to let help
paint 
• “Jan says that we have wanted to let the children help Hans paint the 
house”

(A liGle like “The cat the dog the mouse scared chased likes tuna fish”)



Is Swiss German Context-Free?

Shieber’s complex argument…

L1 = 
Jan säit das mer (d’chind)* (em Hans)* es huus
haend wele (laa)* (hälfe)* aastriiche

L2 = Swiss German

L1 ∩ L2 = 
Jan säit das mer (d’chind)n (em Hans)m es huus
haend wele (laa)n (hälfe)m aastriiche



Why do we care? (1)

• Math is fun?
• Complexity: 
– If you can use a RE, don’t use a CFG.  
– Be careful with anything fancier than a CFG.

• Safety: harder to write correct systems on a 
Turing Machine.

• Being able to use a weaker formalism may 
have explanatory power?



Why do we care? (2)

• Probably a source for future new algorithms
• Probably not how humans actually process NL
• Might not ma?er as much for NLP now that 

we know about real numbers?
– But we don’t want your friends making fun of you


